EXPRESSON OF SEXUAL POLYMORPHISM IN \textit{HERACLEUM SIBIRICUM} (\textit{APIACEAE}) INFLORESCENCES IN MOSCOW REGION

V. N. Godina,*, T. V. Arkhipovaa, and J. I. Ialamovaa

a Moscow Pedagogical State University
Kibalchicha Str., 6, Bldg. 3, Moscow, 129164, Russia
*e-mail: vn.godin@mpgu.su

Sexual polymorphism and the structure of synflorescences of \textit{Heracleum sibiricum}, a biennial or perennial taproot herb, were studied in 2017–19 in three populations in the Moscow Region. Four types of \textit{H. sibiricum} individuals were identified according to the degree of branching of the inflorescence (double umbels on shoots of I, I–II, I–III, and I–IV orders of branching), which correspond to three types of synflorescences: a single terminal double umbel, a raceme of double umbels, and a panicle of double umbels. With an increase in the degree of synflorescence branching, an increase in the size of the double umbels and their structural components occurs, as well as decrease in the number of staminate flowers on shoots of the same branching order. Simple umbellets can include both bisexual, pistillate, and staminate flowers (the latter always occupy a central position), only bisexual (on plants in terminal double umbels with a high degree of synflorescence branching), bisexual and staminate flowers (most often in double umbels on shoots of III and IV orders), and only pistillate (in rarely found exclusively females on shoots of only I–II orders of branching). In \textit{H. sibiricum}, a combination of andromonoecy and gynodioecy is observed in the populations, which is expressed as andromonoecious (bisexual and staminate flowers; the share of such plants in populations varies from 88.9 to 92.1 percent), polygamomonoecy (bisexual, pistillate, and staminate flowers; the share of these plants ranges from 6.8 to 8.4 percent), and female (only pistillate flowers; the frequency of such plants varies from 0.9 to 3.4 percent). The reasons and significance of sexual polymorphism in flowering plants are discussed.

\textit{Keywords:} sexual polymorphism, \textit{Heracleum sibiricum}, Apiaceae, population, andromonoecy, polygamomonoecy, gynodioecy

REFERENCES

Dem’yanova E.I., Shestakova O.M., Detkova A.G. 2000. About sexual structure of gynodioecious populations of...

Grosset H.E. Modificational variability of Seseli puce-danoides (Bieb.) K.-Pol. and the sexual polymorphism of this species and Heracleum sibiricum L. — Byulleten MOIP. Otd. Biologii. 79 (6): 57–77 (In Russ.).

